Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a }}$ * Juxian Wang, ${ }^{\text {a }}$ Chunling Shi, ${ }^{\text {a }}$ Liangce Rong, ${ }^{\text {a }}$ Xiangshan Wang ${ }^{\text {a }}$ and Hongwen Hu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: dqshi@163.com

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.109$
Data-to-parameter ratio $=14.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

9-Chloro-5,5-dimethyl-2,3-diphenyl-2,3-dihydroimidazo[1,2-c]quinazoline

The title compound, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClN}_{3}$, (I), was synthesized by the reaction of 4,5-diphenyl-2-(2-nitro-5-chlorophenyl)imidazole with acetone, induced by a low-valent titanium reagent ($\mathrm{TiCl}_{4} /$ Zn). X-ray analysis reveals that (I) contains a pyrimidine ring in a distorted boat conformation.

Comment

Quinazolines are an important class of compounds found in many naturally occurring products (e.g. hinckdentine A; Blackman et al., 1987; Billimoria \& Cava, 1994), and employed as potent agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1998). Low-valent reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 2003). We report here the crystal structure of 9-chloro-5,5-dimethyl-2,3-di-phenyl-2,3-dihydroimidazo[1,2-c]quinazoline, (I), synthesized by the reaction of 4,5-diphenyl-2-(2-nitro-5-chlorophenyl)imidazole with acetone, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$.

(I)

In (I), atoms N1, C5, C6, C7, N1 and C10 form a pyrimidine ring, with an interatomic distance of 1.440 (3) \AA for $\mathrm{N} 1-\mathrm{C} 10$ and 1.487 (2) \AA for $\mathrm{N} 2-\mathrm{C} 10$, which show that these $\mathrm{C}-\mathrm{N}$ bonds are single. The pyrimidine ring adopts a distorted boat conformation (Figs. 1 and 2); atoms C5, C6, C7 and N2 are coplanar, while atoms N 1 and C 10 deviate from this plane by 0.157 (1) and 0.347 (1) A, respectively. The dihedral angle between the $\mathrm{C} 13-\mathrm{C} 18$ and $\mathrm{C} 19-\mathrm{C} 24$ phenyl rings is $79.31(2)^{\circ}$. In addition, because of conjugation, the distances $\mathrm{N} 1-\mathrm{C} 5 \quad[1.378(2) \AA], \mathrm{N} 2-\mathrm{C} 7 \quad[1.364(2) \AA]$ and $\mathrm{N} 2-\mathrm{C} 8$ [1.388 (2) A] are significantly shorter than the typical Csp ${ }^{2}-\mathrm{N}$ bond distance (1.426 \AA; Lorente et al., 1995). The molecules are linked by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond (Table 2), forming a chain along the c axis (Fig. 2).

Experimental

The title compound (I), was prepared by the reaction of 4,5 -diphenyl-2-(2-nitro-5-chlorophenyl)imidazole with acetone induced by lowvalent titanium reagent ($\mathrm{TiCl}_{4} / \mathrm{Zn}$) (m.p. 528-529 K). Single crystals

Received 21 August 2003 Accepted 1 October 2003 Online 7 October 2003

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A molecular packing diagram of (I). H atoms have been omitted for clarity.
suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{ClN}_{3}$

$M_{r}=385.88$
Monoclinic, $P 2_{1} / c$
$a=8.955$ (1) \AA
$b=17.568$ (2) A
$c=13.075$ (2) \AA
$\beta=90.26(1)^{\circ}$
$V=2056.9(4) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: ψ scan (XSCANS; Siemens, 1994)
$T_{\text {min }}=0.893, T_{\text {max }}=0.945$
4393 measured reflections
3833 independent reflections
2274 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.109$
$S=0.88$
3833 reflections
260 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

N1-C5	$1.378(2)$	$\mathrm{N} 3-\mathrm{C} 7$	$1.328(2)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.440(3)$	$\mathrm{N} 3-\mathrm{C} 9$	$1.386(2)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.364(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.448(3)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.388(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.378(2)$
N2-C10	$1.487(2)$		
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 10$	$122.50(16)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$118.52(19)$
C7-N2-C8	$107.12(14)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 2$	$111.86(17)$
C7-N2-C10	$121.96(16)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$	$127.74(17)$
C8-N2-C10	$129.94(15)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$120.40(16)$
C7-N3-C9	$105.19(15)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 13$	$123.84(15)$
N1-C5-C4	$122.17(18)$		
C10-N1-C5-C4	$-155.6(2)$	$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 10-\mathrm{N} 2$	$-42.6(3)$
C1-C6-C7-N3	$-6.6(3)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 18$	$-83.6(3)$
C1-C6-C7-N2	$173.91(18)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 18$	$95.8(2)$
N2-C8-C9-N3	$1.1(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 19-\mathrm{C} 20$	$152.8(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~N}^{\mathrm{i}}$	$0.90(2)$	$2.26(2)$	$3.147(2)$	$172.3(19)$

Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.
The H atom on N was refined isotropically, with the $\mathrm{N}-\mathrm{H}$ bond length restrained to $0.90 \AA$; other H atoms were positioned geometrically and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.93-0.98 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=1.2$ $\left.U_{\text {eq }}(\mathrm{C})\right]$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province and the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 03KJB150136) for financial support.

References

Billimoria, A. D. \& Cava, M. P. (1994). J. Org. Chem. 59, 6777-6782.
Blackman, A. J., Hambley, T. W., Picker, K., Taylor, W. C. \& Thirasasana, N.(1987). Tetrahedron Lett. 28, 5561-5562.

Brana, M. F., Castellano, J. M., Keilhauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. \& Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.
Helissey, P., Cros, S. \& Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51-57.
Ibrahim, E., Montgomerie, A. M., Senddon, A. H., Proctor, G. R. \& Green, B. (1998). Eur. J. Med. Chem. 23, 183-188.

Lorente, A., Galan, C., Fonseca, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem. 73, 1546-1555.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Riou, J. F., Helissey, P., Grondard, L. \& Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Rong, L. C., Wang, J. X., Zhuang, Q. Y., Wang, X. S. \& Hu, H. W. (2003). Tetrahedron Lett. 44, 3199-3201.

Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

